价 格: | 面议 | |
型号/规格: | FNK3400 | |
品牌/商标: | FNK | |
封装形式: | SOT-23 | |
环保类别: | 无铅环保型 | |
安装方式: | 贴片式 | |
包装方式: | 卷带编带包装 | |
功率特征: | 小功率 |
音频功率放大器按所用放大器件可分为电子管放大器、晶体管放大器、集成电路放大器、场效应管放大器以及由上述所用器件两种或两种以上组成的混合放大器。各类放大器电路及所用元器件又是五花八门,千变万化
,由此对音源的重放音质又各具特色,很难说哪一种放大器能以偏概全、技压群芳,成为放大器。
电子管放大器由于空间电荷的传输时滞作用,重放音色温暧柔和,尤其是弦乐人声,醇美剔透,耐人寻味;晶体管以及集成电路放大器具有犀利的分析力、宽畅的频响和强劲的动态,具有朝气蓬勃、催人奋进的感召力;场效应管放大器以及混合器件放大器,力图综合电子管和晶体管音频特性。
无论哪类音响设备,功率放大器依然是音频能量扩大推动扬声器出声不可或缺的终端,各类放大器均能实现,不过现代人们对音响( 技术因素为主,如频率响应、失真度、信噪比等) 和音乐( 艺术魅力为主,如声底是否醇厚、堂音是否丰富、听感是否顺耳等)的苛求愈来愈高,“金耳朵”们能够听出歌手的齿音、口角及深临其境直逼现场的感觉,因此对音频放大器重放音色( 建立在良好音质基础之上) 也寄予更大的企求。
各类音频放大器有各自的优点、属性及不足,场效应管放大器主流兼具晶体管和电子管两者的优势,同时还具备两者所没有的优势,在电路程式上,大量实践证明,单端A 类功放是以效率换音品的典范。
不少发烧友从单纯追求音品出发,反复制作功放,反复对比听音,最终为单端A 类所动!
dzsc/19/4422/19442243.jpg
dzsc/19/4422/19442243.jpg
MOSFET的核心:金属—氧化层—半导体电容 金属—氧化层—半导体结构MOSFET在结构上以一个金属—氧化层—半导体的电容为核心(如前所述,今日的MOSFET多半以多晶硅取代金属作为其栅极材料),氧化层的材料多半是二氧化硅,其下是作为基极的硅,而其上则是作为栅极的多晶硅。这样子的结构正好等于一个电容器(capacitor),氧化层扮演电容器中介电质(dielectric material)的角色,而电容值由氧化层的厚度与二氧化硅的介电常数(dielectric constant)来决定。栅极多晶硅与基极的硅则成为MOS电容的两个端点。 当一个电压施加在MOS电容的两端时,半导体的电荷分布也会跟著改变。考虑一个p-type的半导体(电洞浓度为NA)形成的MOS电容,当一个正的电压VGB施加在栅极与基极端(如图)时,电洞的浓度会减少,电子的浓度会增加。当VGB够强时,接近栅极端的电子浓度会超过电洞。这个在p-type半导体中,电子浓度(带负电荷)超过电洞(带正电荷)浓度的区域,便是所谓的反转层(inversion layer)。 MOS电容的特性决定了MOSFET的操作特性,但是一个完整的MOSFET结构还需要一个提供多数载子(majority carrier)的源极以及接受这些多数载子的漏极。 ...
操作模式 NMOS的漏极电流与漏极电压之间在不同VGSVth的关系 MOSFET在线性区操作的截面图 MOSFET在饱和区操作的截面图依照在MOSFET的栅极、源极,与漏极等三个端点施加的“偏压”(bias)不同,一个常见的加强型(enhancement mode)n-type MOSFET有下列三种操作区间:截止或次临限区(cut-off or sub-threshold region) 当栅极和源极间的电压VGS(G代表栅极,S代表源极)小于一个称为临界电压(threshold voltage,Vth)的值时,这个MOSFET是处在“截止”(cut-off)的状态,电流无法流过这个MOSFET,也就是这个MOSFET不导通。 但事实上当VGS>Vth、且VDS=0,一些拥有大量MOSFET的积体电路产品,如DRAM,次临限电流往往会造成额外的能量或功率消耗。 dzsc/19/4422/19442289.jpg dzsc/19/4422/19442289.jpg dzsc/19/4422/19442289.jpg