价 格: | 面议 | |
型号/规格: | 1206 475M 50V | |
品牌/商标: | MURATA(村田) | |
环保类别: | 无铅环保型 | |
安装方式: | 贴片式 | |
包装方式: | 卷带编带包装 | |
产品主要用途: | 普通/民用电子信息产品 | |
引出线类型: | 无引出线 | |
特征: | 片状型 | |
标称容量范围: | 4.7 | |
额定电压范围: | 50 | |
温度系数范围: | 55 |
传统的电阻式触摸屏共有5层构成。手指触摸的表面是一个硬涂层,用以保护下面的PE T层(一种透明性、阻气性好的保护材料)。PE T层是很薄的有弹性的PE T薄膜,当表面被触摸时它会下弯曲,并使得下面的两层IT O涂层(一种纳米铟锡金属氧化物,具有很好的导电性和透明性)相互接触,并在该点连通电路。
优点:技术较成熟,成本相对较低,表面不容易受尘埃、水、污物影响。
缺点:触摸屏中的IT O涂层比较薄且容易脆断,若太厚又会降低透光且形成内反射降低清晰度。这种触摸屏的寿命并不长久,而且需要经常做触摸点的位置校正。
●电容式触摸屏
电容式触摸屏分为“表面电容式”(Surface Capacitive Technology )和“投射电容式”(Projected Capacitive Technology)两种。
“表面电容触摸屏”只采用单层的IT O,在触摸屏四边均镀上狭长的电极,在导电体内形成一个低电压交流电场。和电阻式相比,电容式的特点就是不需要按压,只需要触碰即可输入指令。
至于“投射电容触摸屏”,可以穿透较厚的覆盖层,而且不需要校正。投射电容可以做到iPhone标志性的“多点触控”操作。
优点:只需要触摸,而不需要压力来产生信号;在生产后只需要一次或者完全不需要校正;寿命会长些,因为电容触摸屏中的部件不需任何移动。
缺点:成本相对较高,但随着目前主流智能手机清一色选择电容屏,规模呈爆炸性增长,成本亦不断下降。
另一个作用是去除导致EMI(Electro-Magnetic Interference,电磁干扰)的噪声成分。也就是滤波器作用。通过利用电容器高频阻抗较低这一特点,使高频噪声成分到达电源/接地层。 一般而言,前一种作用被称为去耦电容器,后一种作用被称为旁路电容器。而大容量片状独石陶瓷电容器则可同时承担这两种作用。 继去耦及旁路之后,用途较多的是配备在DC-DC转换器的输出部分用作平滑滤波器。原来该用途广泛使用的是铝电解电容器及钽电解电容器。但是,业内为使电子设备实现小型化和薄型化,从20世纪90年代下半期开始使用片状独石陶瓷电容器。 片状独石陶瓷电容器之所以得以在该用途中应用,电源半导体厂商的努力功不可没。用作平滑滤波器的电容器构成了DC-DC转换器中反馈控制环路的一个部分。因此,等效串联阻抗(ESR:Equivalent Series Resistance)过小的话,控制环路的相位余量就会变小,容易发生DC-DC转换器无法稳定工作的问题。 而另一方面,电子设备厂商又对DC-DC转换器实现小型薄型化有着强烈的需求。因此,电源半导体厂商通过改进DC-DC转换器IC的控制电路,使得使用片状独石陶瓷电容器成为现实。从2000年起,电源半导体厂商开始以能够使用片状...
之后的片状独石陶瓷电容器的历史也许可以用“小型化和大容量化的历史”来概括。通常电容器的静电容量C可用 C=εS/d 来表示。其中,ε为介电率,S为电极面积,d为电极间距离(介电体的厚度)。也就是说,要想在固定体积下增加静电容量的话,只有采用ε值高的材料,或者减薄介电体。 在介电体材料方面,虽然在产品化的初期采用的是氧化钛,但在较早阶段就已导入钛酸钡(BaTiO3)。之后,通过进一步改进该材料,介电率得到不断提高,目前已达到3000左右。这一数值要比氧化钛仅为几十水平的介电率大两位数。 从介电体的厚度来看,推出之初为50μm,之后逐渐减薄,目前仅为0.5μm。也就是说,与推出之初相比,介电率提高了100倍,厚度减少至 1/100。厚度减至1/100的话,便可将层叠数增多100倍。因此,从静电容量来看,在相同体积条件下相当于增加到了100万倍。而反过来从体积来看,就意味着在相同静电容量条件下可实现1/100万倍的小型化。 去耦用途占到市场份额的7成 如上所述,片状独石陶瓷电容器被广泛用于配备在微处理器、DSP、MCU及FPGA等半导体器件的周围电路,以使这些半导体器件能够正常工作。配备的个数(总数)非常多。比...