价 格: | 115.00 | |
型号/规格: | 贴片功率电感 CD32 100UH 0.314A | |
品牌/商标: | CHILISN (奇力新) FH(风华) | |
环保类别: | 无铅环保型 | |
主要用途: | 普通/民用电子信息产品 | |
额定电流: | 0.31 | |
额定电压: | 0.25 | |
外形尺寸: | 3.5*3*2.1 |
单的降压转换器对于低功率电源非常有用,且性价比高,适用于输入至输出隔离非必需的应用。而在离线主电源中,由于转换器输出电压较低,输入至输出电压差过高,增加了降压转换器中的峰值-平均电流比,导致电源元件工作的占空比极低,并通常会降低能效和电路性能。本文介绍一种解决方案,即利用抽头式降压输出扼流圈来解决这些问题。
降压转换器工作
图1所示为300mA、12V输出电压(功率3.6W)的传统离线降压转换器。该转换器采用了安森美半导体的集成MOSFET的NCP1014单片电流模式控制器,使电路最简洁;当然,也可以采用分立控制器NCP1216和一个独立的MOSFET来配置。稳压和反馈由齐纳二极管Z1、相关电阻R2和R3及光耦合器U2所构成的简单网络来达成。需要光耦合器是因为NCP1014控制器的接地位于开关节点,而光反馈是克服相关的dV/dt和其他类型分立反馈和/或电压偏置电路相关高压问题的最简单、最经济方法。这个电路图还包括一个简单的传导型电磁干扰(EMI)滤波器,含C1、C2、L1和C3构成的π网络。
如同典型的降压工作,大电容
C3两端的离线电压为U1的内部MOSFET漏极(引脚3)提供直流电平,MOSFET的源极(引脚4)会控制直流电平的开和关,并提供给由电感L2和电容C4组成的滤波器。这个由电感L2和电容C4组成的L/C输出滤波器通过由Z1/U2组成的电压感测/反馈电路和U1中的脉宽调制(PWM),将开关矩阵波形均化为C4所需的直流输出电压。当U1中的MOSFET处于关断状态时,续流二极管D5为L2续流。
降压转换器的直流输出电压由Vout=D×Vin所确定。其中,D是L2输入提供的矩形波的占空比(MOSFET导通时间除以总开关周期T);Vin是提供给降压开关电路的直流电压。对于120Vac额定输入和12Vac输出而言,我们能够轻松地计算出内部MOSFET开关的所需占空比D。
D=Vout/(Vinac×1.4)=12/(120×1.4)=0.07
对100kHz的开关频率(T=10靤)而言,这个占空比非常小,相当于0.07×10霺=0.7霺的导通时间。这样短的导通时间实际上不比控制器的内部传播延迟长多少,并没给因负载改变的脉宽动态范围多少余量,且当负载电压降至使L2电流不连续时,自然会导致子开关(sub-switching)进入频率脉冲跳周期工作模式。这个模式工作也许可行,只要电源的输出纹波不是太高和/或电感中没有可听噪声。
在低占空比模式下,还需要提高主输出扼流圈L2的电感,以避免在额定输出负载时出现非连续导电模式(DCM) 。电感设计也与MOSFET的峰值-平均电流比有关。流经内部MOSFET U1的峰值电流是输出负载电流和L2的磁化电流之和。在额定线路条件(C3上165Vdc)下,开关周期末期的峰值磁化电流由E=L×dI/dt这个关系等式所确定。整理这个等式可得到:dI=(E×dt)/L。本例中的磁化电流就为:
dI=[(Vindc-Vout)×dt]/L=[(165-12)×0.7]/750霩=0.143A
峰值MOSFET电流将是:300mA(负载电流)+143mA=443mA
假定没有容限变化,NCP1014的额定规定过流脱扣(overcurrent trip)电平是450mA。因此,这里的问题就是我们怎样才能避免上述低占空比问题,并能使用相同的半导体器件,做最少的电路变更而从这个降压转换器获得尽可能大的输出电流。
只要做出修改,便能解决与低占空比相关的问题。从图2所示的抽头式电感降压转换器电路图可见,它还能提供更大的输出电流。从输出端将电感抽头在25%并在这个节点连接续流二极管,我们可将MOSFET新的占空比提高至接近D’=0.24或2.4靤,而输出电流可增加大约3倍至近1A。扩展后的占空比D’和峰值电流升流效应Iboost之间的关系如下。
D’=(N+1)/[N+(Vindc/Vout)]
其中,N是抽头任意端两个绕组的匝数比。在本例中,左端或抽头输入端的绕组拥有3倍于输出或抽头续流端绕组的匝数。峰值电流升流能力由下面的公式确定。
Iboost=(N+1)/[(N×Vout/Vindc)+1]
直流电压输出至输出转换等式这时候变为:
Vout=Vindc/{[(N+1)/D]-N}
这种解决方案的可行性
电感中的电流必须连续的这种说法是不正确的。事实上,电感的电流I与匝数N的乘积却是必须连续的,也就是说,NI的值在整个开关周期T内都必须保持恒定。在抽头式电感中,MOSFET导通时的N为全部的电感匝数。但是,当MOSFET关断时,绕组输出端的电流必须迅速增加至峰值电平,即导通电流的4倍,因为输出或续流二极管的匝数只是整个绕组匝数的1/4。这个转变的典型电流波形如图3所示。图中,MOSFET导通A段为电压在整个电感上的磁化斜坡。当开关关断时,B段中出现电流中断,电流在此处跃升至由峰值电流。电流上升-下降斜线C由输出电压和MOSFET关断时续流二极管上的压降所确定,并可由这个关系等式表示:dI=(E×dt)/L。需要注意的是,L是全通态绕组电感的1/16,因为电感与N的平方成正比。由于电感会调整经过它的电流波形,续流绕组在关闭时间的波形区域大于导通时间电流波形的区域,因此平均输出电流会更高。
局限及实际考虑
图2是普通电感线圈的阻抗与频率的关系图,由图中可以看出,电感线圈的阻抗开始的时候是随着频率升高而增大的,但当它的阻抗增大到值以后,阻抗反而随着频率升高而迅速下降,这是因为并联分布电容的作用。当阻抗增到值的地方,就是电感线圈的分布电容与等效电感产生并联谐振的地方。图中,L1 》 L2 》 L3,由此可知电感线圈的电感量越大,其谐振频率就越低。从图2中可以看出,如果要对频率为1MHz的干扰信号进行抑制,选用L1倒不如选用L3,因为L3的电感量要比L1小十几倍,因此L3的成本也要比L1低很多。 如果我们还要对抑制频率进一步提高,那么我们选用的电感线圈就只好是它的最小极限值,只有1圈或不到1圈了。磁珠,即穿心电感,就是一个匝数小于1圈的电感线圈。但穿心电感比单圈电感线圈的分布电容小好几倍到几十倍,因此,穿心电感比单圈电感线圈的工作频率更高。 穿心电感的电感量一般都比较小,大约在几微亨到几十微亨之间,电感量大小与穿心电感中导线的大小以及长度,还有磁珠的截面积都有关系,但与磁珠电感量关系的还要算磁珠的相对导磁率Uy。图3、图4是分别是指导线和穿心电感的原理图,计算穿心电感时,首先要计算一根圆截面直导线的电感,然后计算...
磁珠和电感在解决EMI和EMC方面的作用有什么区别,各有什么特点,是不是使用磁珠的效果会更好一点呢? 磁珠专用于抑制信号线、电源线上的高频噪声和尖峰干扰,还具有吸收静电脉冲的能力。磁珠是用来吸收超高频信号,象一些RF电路,PLL,振荡电路,含超高频存储器电路(DDRSDRAM,RAMBUS等)都需要在电源输入部分加磁珠,而电感是一种蓄能元件,用在LC振荡电路,中低频的滤波电路等,其应用频率范围很少超过50MHZ. 磁珠有很高的电阻率和磁导率,等效于电阻和电感串联,但电阻值和电感值都随频率变化。 磁珠的功能主要是消除存在于传输线结构(电路)中的RF噪声,RF能量是叠加在直流传输电平上的交流正弦波成分,直流成分是需要的有用信号,而射频RF能量却是无用的电磁干扰沿着线路传输和辐射(EMI)。要消除这些不需要的信号能量,使用片式磁珠扮演高频电阻的角色(衰减器),该器件允许直流信号通过,而滤除交流信号。通常高频信号为30MHz以上,然而,低频信号也会受到片式磁珠的影响。磁珠有很高的电阻率和磁导率,他等效于电阻和电感串联,但电阻值和电感值都随频率变化。他比普通的电感有更好的高频滤波特性,在高频时呈现阻性,所以能在相当宽的频率范围内保持较高的阻...