价 格: | 0.11 | |
型号/规格: | 8*12 1IUF 200V | |
品牌/商标: | SF | |
环保类别: | 无铅环保型 | |
安装方式: | 直插式 | |
包装方式: | 散装 | |
产品主要用途: | 普通/民用电子信息产品 | |
引出线类型: | 径向引线型 | |
特征: | 圆柱体型 | |
标称容量范围: | 1 | |
额定电压范围: | 200 | |
温度系数范围: | -40/+105 |
电容分析:用薄膜电容器替代铝电解电容器的分析与实践
1 前言
铝电解电容器是制约变频器使用寿命的最关键的元件,其主要原因是铝电解电容器的寿命问题,特别在变频器这样的高谐波电流、高温的应用场合。相对其它元件而言,铝电容电容器的寿命是最短的。
2 “直流支撑”与“DC-Link”电容器的作用
在直流电作为逆变器的供电电源时,由于这个直流电源需要通过直流母线与逆变器链连,这种供电方式也被称为“DC-Link”。由于逆变器需要向“DC-Link”索取有效值和幅值很高的脉动电流,会在“DC-Link”上产生很高的脉动电压使得逆变器难以承受。为此,需要对“DC-Link”进行“支撑”,以确保“DC-Link”的供电质量。
在大多数情况下,支撑“DC-Link”的元件是电容器。“DC-Link”电容器的作用主要是吸收来自于逆变器向“DC-Link”索取的高幅值脉动电流,阻止其在“DC-Link”的阻抗上产生高幅值脉动电压,使逆变器端的电源电压波动保持在允许范围。
“DC-Link”电容器的第二个作用就是防止来自于“DC-Link”的电压过冲和瞬时过电压对逆变器的影响。
3 工频多相整流的直流母线电容器的作用
三相桥式整流电路或12相整流电路用于负载电流没有突变的应用中,没有必要在整流输出端跨接直流母线电容器,由于没有电流突变,整流器及交流电源的寄生电感生产的感生电势不会很高而影响输出电压。
然而,当负载为开关功率变换器时,开关功率变换器将向直流母线索取开关频率下的纹波电源,如果这个电流流入直流母线及交流侧的寄生电感,将会产生不能容忍的开关频率下的纹波电压。从这一点看,直流电源不再是仅仅提供直流电流,而是需要提供带有丰富交流成分的脉冲电流,这时的直流电源不仅需要低的直流内阻,还需要在很宽的频带宽度内均具有良好的低阻抗。而这个宽频段的低阻抗作为整流器的直流电源是不会提供的,要想获得良好的宽频段的低阻抗必须应用性能良好的电容器。利用电容器电压不能跃变和电容器容抗随频率的升高而降低的特性,用电容器降低直流母线的交流阻抗。
从这个角度考虑,三相桥式整流或12相整流输出直流母线并接的电容器不再是平滑电压的滤波电容器,而是电源旁路电容器,或称为“直流支撑”、“DC-Link”电容器。
“直流支撑”、“DC-Link”电容器可以选择铝电解电容器,也可以选择薄膜电容器。由于铝电解电容器自身可承受的纹波电流值比较低,在“直流支撑”、“DC-Link”应用中需要满足承受高幅值纹波电流,这就要求在选择铝电解电容器时要按纹波电流的大小选择铝电解电容器,如果负载产生20A的纹波电流,要选择1000µF的电容量。
从上述叙述可以得出结论,直流支撑电容器的作用就是在负载电流波动时为负载提供“无感”的直流“电源”,消除开关与供电电源之间无法估计的并且量值很大的寄生电感所产生的不希望出现的感生电视的电压尖峰。
尽管这种解决方案可能是的,但是价格可能是非常高,一般应用将接受不了。那么,是否有更好的解决方案?结论是可以有几种低价格并且性能很好的解决方案。
4 价格问题
用薄膜电容器替代铝电解电容器的关键是价格问题。如果额定电压为700V的薄膜电容器能够做到每一元人民币1µF~2µF的电容量就可以替代铝电解电容器。
有的电容器制造商认为每一元人民币2µF的价格是制造不出来的,也有的电容器制造商经过精打细算后认为是可以实现的。如果有足够的电容量并且在价格上接近或低于铝电解电容器,这样的解决方案将是更好的。需要采用薄膜电容器替代铝电解电容器时,应按小容量替换比例进行替换。
什么是超级电容器? 超级电容器的准确名称,是电化学或电双电层电容器(具体名称取决于制造商),简称EDLC。超级电容器的表现与传统电容器(包括多层陶瓷电容器、钽电容器、电解电容器等)相似,但能量密度更高。这是由具有极大的电荷存储表面积的多孔炭电极与专门的电解质提供的极薄的板分离层相结合而形成的。 EDLC的电容值不适合置于超薄便携系统(应用于氙气闪光灯的电解电容器的典型厚度为6mm以上,与之相比,EDLC的典型厚度约为2mm-3mm)。对额定电压为2.75V-2.85V的单元电容器而言,EDLC的电容值可以达到180mF-1.8F。本文将重点讨论额定电压为5.5V-5.7V(两个单元EDLC串联)以及电容值为425mF-550mF的双单元 EDLC。 在何处放置超级电容器? 在便携系统中使用大电容具有很多优势。超级电容器所在的位置会对电池供电电流产生显著影响。 如果将超级电容器与系统电池并排放置,那么在LED闪光驱动器或射频传输吸收大电流时,超级电容将有助于降低电池的峰值电流。超级电容器和电池提供的电流量与其ESR值成反比。较低的ESR(这种情况下电池和超级电容器互相组合)会产生较大的电流。超级电容器的ESR值可以低至50mΩ,而典型的锂离子电池的ESR值为200...
技术:超级电容器电源子系统让您的电池养精蓄锐 如今手机具备越来越丰富的功能,耗电量也随之增加。两三年前流行的VGA成像器目前正在被具备320万像素且配备更高电流LED闪光灯的成像器取代(有些甚至高达800万像素);可进行多媒体录音的高电耗立体声驱动器,正逐渐取代低电耗单声道音频驱动器。随着3G网络的普及,无线数据传输呈指数增长,这就需要手机中配备更多的射频功放来处理语音呼叫和数据流。遗憾的是,这些功能在使用时都会消耗大量的电池电流(1A+)。如果同时使用这些功能,就会导致电池电流的经常性故障,或者出现手机故障关机现象。 针对峰值电池电流出现的问题,其解决方案包括谨慎管理脉冲计时以及减少对整体性能的要求(例如限制闪光灯电流或音量大小)。但是,这两种解决方案都限制了手机性能的延展,因此并不被提倡。另外还有一种方法可供选择,那就是创建一个基于超级电容器的电源子系统,而且超级电容器管理芯片能够帮助应用程序完全复原。 目前系统面临的问题 针对锂离子电池的电流限值(约为2A-3A),设计者必须谨慎管理系统中不同负载的电流需求分配,避免出现过电流现象。此外,当电池电压降低并接近系统阻断电压时,与电池ESR相...