温度控制的构成例
介绍进行温度控制的基本结构。根据温度调节器" href="http://www.18show.cn/product/st100.html" target="_blank">调节器的种类选择不同可连接传感器" href="http://www.18show.cn/subject/s106.html" target="_blank">传感器与操作器。
dzsc/19/4185/19418595.jpg
温控器的基本原理
■温度控制
向温控器输入设定值使其动作, 但在有些控制对象的特性下可能无法立刻让温度稳定下来。一般来说要加快响应速度,就会产生温度超出的超调和温度振荡, 如果要消除这些现象就只能延迟响应速度。但是在有些用途下,例如图(1)那样虽然发生了超调仍要求尽快恢复稳定控制,或者如图(3)那样就算费些时间仍希望抑制超调的情况也存在。也就是说对温度控制的评价随用途、目的的不同而不同。一般认为图(2)为适当的控制波形。
( 1 ) 振动的响应(几次重复超调后才稳定下来)
dzsc/19/4185/19418595.jpg
( 2 ) 适合的响应
dzsc/19/4185/19418595.jpg
( 3 ) 难以到达变更后的设定值的响应(缓慢)
dzsc/19/4185/19418595.jpg
温控器的基本原理
■控制对象的特性
要用温度控制来进行适当的控制, 在选择温控器和测温体之前, 必须充分了解控制对象的热特性。
dzsc/19/4185/19418595.jpg
ON/OFF动作
如图所示, 当前温度如果低于设定值, 将输出ON, 向加热器通电。如果高于设定值,将输出OFF后切断加热器。象这样以设定值为标准重复进行ON、OFF操作,将温度保持在固定水平的控制方式就称为ON/OFF动作。另外,操作量以设定值为标准按0%和 100%2个值进行动作, 因此也称为双位置动作。
dzsc/19/4185/19418595.jpg
P动作(比例动作)
输出与输入成比例的输出的一种控制动作。
对于设定值具有一个比例带, 其中操作量(控制输出量) 与偏差成比例的动作就称为比例动作。
一般当前温度低于比例带时操作量就为100%, 在比例带之内时操作量与偏差成比例逐渐缩小,设定值和当前温度一致(无偏差)后操作量就为50%。也就是说,和ON/OFF动作相比这种控制的振荡较小且比较平滑。
dzsc/19/4185/19418595.jpg
I 动作(积分动作)
输出与输入的时间积分值成比例的输出的一种控制动作。在比例动作中会产生偏移。
因此在比例动作的同时配合使用积分动作, 随着时间推移, 偏移会逐渐消失, 控制温度就会与设定值变为一致。
dzsc/19/4185/19418595.jpg
D动作(微分动作)
输出与输入的时间微分值成比例的输出的一种控制动作。比例动作和积分动作是对于控制结果的一种修正, 因此对于剧烈的变化,响应必定会变慢。微分动作就是对这种现象的一种补救措施。通过添加与温度变化的斜率成比例的操作量来进行修正动作。对于剧烈的干扰给予较大的操作量,尽早使其恢复原先的控制状态的一种动作。
dzsc/19/4185/19418595.jpg
PID控制
PID控制就是将比例动作、积分动作、微分动作组合起来的一种控制。用比例动作进行没有振荡的平滑控制, 用积分动作自动修正偏移,用微分动作加快对于噪声的响应。
dzsc/19/4185/19418595.jpg
2自由度PID控制
以前的PID控制方式中, 用同一个调节部位控制对目标值的响应和对干扰的响应。因此, 在调节部位的PID参数设定中如果重视①干扰响应(一般P、I设定得较小, D设定得较大), 目标值响应则振动(出现超调) , 反过来如果重视②目标值响应(一般P设定得较大, I也设定得较大), 干扰响应就会变慢, 无法同时满足双方的响应性是这种方式的缺点。
为了消除这个缺点, 可以通过引进2自由度PID控制方式, 在保留 PID的优点的同时, 可以同时满足③目标值响应和干扰响应。
dzsc/19/4185/19418595.jpg
直流电流信号隔离器的工作原理及技术特点 直流电流信号隔离器是将输入单路或双路电流或电压信号,变送输出隔离的单路或双路线性的电流或电压信号,并提高输入、输出、电源之间的电气隔离性能。 在工业生产过程中实现监视和控制需要用到各种自动化仪表、控制系统和执行机构,它们之间的信号传输既有微弱到毫伏级、微安级的小信号,又有几十伏,甚至数千伏、数百安培的大信号;既有低频直流信号,也有高频脉冲信号等等,构成系统后往往发现在仪表和设备之间信号传输互相干扰,造成系统不稳定甚至误操作。出现这种情况除了每个仪表、设备本身的性能原因如抗电磁干扰影响外,还有一个十分重要的因素就是由于仪表和设备之间的信号参考点之间存在电势差,因而形成“接地环路”造成信号传输过程中失真。因此,要保证系统稳定和可靠的运行,“接地环路”问题是在系统信号处理过程中必须解决的问题。 解决“接地环路”的方法根据理论和实践分析,有三种解决方案: 种方案:所有现场设备不接地,使所有过程环路只有一个接地点,不能形成回路,这种方法看似简单,但在实际应用中往往很难实现,因为某些设备要求必须接地才能保证测量精度...
固态继电器工作原理详细介绍 SSR固态继电器以触发形式,可分为零压型(Z)和调相型(P)两种。在输入端施加合适的控制信号VIN时,P型SSR立即导通。当VIN撤销后,负载电流低于双向可控硅维持电流时(交流换向),SSR关断。 Z型SSR内部包括过零检测电路,在施加输入信号VIN时,只有当负载电源电压达到过零区时,SSR才能导通,并有可能造成电源半个周期的延时。Z型SSR关断条件同P型,但由于负载工作电流近似正弦波,高次谐波干扰小,所以应用广泛。 有的公司SSR由于采用输出器件不同,有普通型(S,采用双向可控硅元件)和增强型(HS,采用单向可控硅元件)之分。当加有感性负载时,在输入信号截止t1之前,双向可控硅导通,电流滞后电源电压90O(纯感时)。t1时刻,输入控制信号撤销,双向可控硅在小于维持电流时关断(t2),可控硅将承受电压上升率dv/dt很高的反向电压。这个电压将通过双向可控硅内部的结电容,正反馈到栅极。如果超过双向可控硅换向dv/dt指标(典型值10V/s,将引起换向恢复时间长甚至失败。 单向可控硅(增强型SSR)由于处在单极性工作状态,此时只受静态电压上升率所限制(典型值200V/s),因此增强型固态继电器HS系列比普通型SSR的换向dv/dt指标提高了520倍。由于采用两只大...