热电式传感器是将温度变化转换为电量变化的装置。它是利用某些材料或元件的性能随温度变化的特性来进行测量的。例如将温度变化转换为电阻、热电动势、热膨胀、导磁率等的变化,再通过适当的测量电路达到检测温度的目的。把温度变化转换为电势的热电式传感器称为热电偶;把温度变化转换为电阻值的热电式传感器称为热电阻。
编辑本段热电式传感器的特点:
1、热电偶特点:
测量精度高:因热电偶直接与被测对象接触,不受中间介质的影响。
测量范围广:常用的热电偶从-50~+1600℃均可连续测量,某些特殊热电偶可测到-269℃(如金铁镍铬),可达+2800℃(如钨-铼)。
构造简单,使用方便:热电偶通常是由两种不同的金属丝组成,而且不受大小和开头的限制,外有保护套管,用起来非常方便。
2、热电阻特点:
信号输出较大,易于测量;
热电阻要借助外加电源,而热电偶可自身产生电势;
热电阻的测温反应速度慢;
同类材料制成的热电阻不如热电偶测温上限高。
编辑本段工作原理:
热电偶是利用热电效应制成的温度传感器。所谓热电效应,就是两种不同材料的导体(或半导体)组成一个闭合回路,当两接点温度T和T0不同时,则在该回路中就会产生电动势的现象。由热点效应产生的电动势包括接触电动势和温差电动势。接触电动势是由于两种不同导体的自由电子密度不同而在接触处形成的电动势。其数值取决于两种不同导体的材料特性和接触点的温度。温差电动势是同一导体的两端因其温度不同而产生的一种电动势。其产生的机理为:高温端的电子能量要比低温端的电子能量大,从高温端跑到低温端的电子数比从低温端跑到高温端的要多,结果高温端因失去电子而带正电,低温端因获得多余的电子而带负电,在导体两端便形成温差电动势。热电阻传感器是利用导体的电阻值随温度变化而变化的原理进行测温的。热电阻广泛用来测量-200~850℃范围内的温度,少数情况下,低温可测量至1K,高温达1000℃。标准铂电阻温度计的度高,作为复现国际温标的标准仪器。
编辑本段热电偶工作原理
热电效应
如右图所示,两种不同性质的导体或半导体材料A、B串接成一个闭合回路,如果两接合点处的温度不同,即T≠T0,则在两导体间产生热电势,也称热电动势,常用EAB(T,T0)表示。同时在回路中有一定大小的电流,这种现象称为热电效应。
几个概念:
热电极:闭合回路中的导体或半导体A、B,称为热电极;
热电偶:闭合回路中的导体或半导体A、B的组合,称为热电耦;
工作端:两个结点中温度高的一端,称为工作端;
参比端:两个结点中温度低的一端,称为参比端;
热电动势:两导体的接触电势 + 单一导体的温差电势;
⑴接触电势:
产生接触电势的主要原因:
① 不同材料具有不同的自由电子密度;
② 两种不同材料的导体接触时,接触面会发生电子扩散;
当扩散达到动态平衡时,在接触区形成一个稳定的电位,表示为:如图所示:
⑵温差电势:
① 导体中自由电子在高温端具有较大的动能;
② 电子从高温端向低温端扩散,因而高温端带正电,低温端带负电,形成静电场,并阻碍电子扩散;
当扩散达到动态平衡时,两端产生一个相应的电位差,称为温差电势,表示为:如图所示
DIP封装压力传感器 MPS2100系列 |
||
dzsc/19/3711/19371183.jpg |
压力传感器 SPD系列 |
|
dzsc/19/3711/19371183.jpg |
血压计压力传感器 NPI-58G |
|
dzsc/19/3711/19371183.jpg |
带温补带放大压力传感器 SPD015GA |
|
dzsc/19/3711/19371183.jpg |
带温补带放大微压传感器 SPD002GAsil |
|
dzsc/19/3711/19371183.jpg |
带温补带放大差压传感器 SPD102DAHyb |
|
dzsc/19/3711/19371183.jpg |
带温补带放大压力传感器 SPD015AASil |
|
dzsc/19/3711/19371183.jpg |
SMD封装压力传感器 MPS-3120 系列 |
|
dzsc/19/3711/19371183.jpg |
压力传感器 SPD015GBHyb |
|
dzsc/19/3711/19371183.jpg |
不锈钢封装压力传感器 MPS5000系列 |
|
dzsc/19/3711/19371183.jpg |
压力传感器 SPD300ABTO5 |
|
dzsc/19/3711/19371183.jpg |
PCB压力传感器 QPS-100A |
|
dzsc/19/3711/19371183.jpg |
数字压力传感器 SPD015GD |
capacitive type transducer 把被测的机械量,如位移、压力等转换为电容量变化的传感器。它的敏感部分就是具有可变参数的电容器。其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器(见图)。若忽略边缘效应,平板电容器的电容为εA/δ,式中ε为极间介质的介电常数,A为两电极互相覆盖的有效面积,δ为两电极之间的距离。δ、A、ε 三个参数中任一个的变化都将引起电容量变化,并可用于测量。因此电容式传感器可分为极距变化型、面积变化型、介质变化型三类。极距变化型一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化(见电容式压力传感器)。面积变化型一般用于测量角位移或较大的线位移。介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。 70年代末以来,随着集成电路技术的发展,出现了与微型测量仪表封装在一起的电容式传感器。这种新型的传感器能使分布电容的影响大为减小,使其固有的缺点得到克服。电容式传感器是一种用途极广,很有发展潜力的传感器。 典型的电容式传感器由上下电极、绝缘体和衬底构成。当薄膜受压力作用时,薄膜会发生一定的变形,因此,上下电极之间的距离发生一定的变化,从而使电容发...
光电传感器 ,带背景分析功能型 (-8-HW) 2)反射板型:一般型 (-6),带偏振滤波功能型 (-54, -55),带透明体检测功能型 (-54-G),带前景抑制功能型 (-54-V) 3)对射型 4)槽型 5)光纤传感器:塑料光纤型,玻璃光纤型 6)色标传感器,颜色传感器,荧光传感器 7)光通讯 8)激光测距:三角反射原理型,相位差原理型,时间差原理型 9)光栅 10)防爆/隔爆型 安全光电传感器 1)安全对射光电 2)安全光栅 3)安全光幕 4)安全控制器 门控光电传感器 1)雷达传感器:区域检测型 2)主动式传感器:单光束型,多光束型,区域检测型 3)被动式传感器:区域检测型 4)电梯光幕 5)通用光电:槽形,对射型等 编辑本段特长 [2]①检测距离长 如果在对射型中保留10m以上的检测距离等,便能实现其他检测手段(磁性、超声波等) 无法远距离检测。 ②对检测物体的限制少 由于以检测物体引起的遮光和反射为检测原理,所以不象接近传感器等将检测物体限定 在金属,它可对玻璃.塑料.木材.液体等几乎所有物体进行检测。 ③响应时间短 光本身为高速,并且传感器的电路都由电子零件构成,所以不包含机械性工作时间,响应时间非常短。 ④分辨率高 能通过设计技术使...