在使用UPS供电系统的过程中,人们往往片面地认为蓄电池是免维护的而不加重视。然而有资料表明,因蓄电池故障而引起UPS主机故障或工作不正常的比例大约为1/3。由此可见,加强对UPS电池的正确使用与维护,对延长蓄电池的使用寿命,降低UPS电源系统故障率,有着越来越重要的意义。除了选配正规品牌蓄电池以外,应从以下几个方面入手正确地使用与维护蓄电池:
(1)保持适当的环境温度。影响蓄电池寿命的重要因素是环境温度,一般电池生产厂家要求的环境温度是在20℃~25℃之间。虽然温度的升高对电池放电能力有所提高,但付出的代价却是电池的寿命大大缩短。据试验测定,环境温度一旦超过25℃,每升高10℃,电池的寿命就要缩短一半。目前UPS所用的蓄电池一般都是阀控式密封铅酸蓄电池,设计寿命普遍是5年,这在电池生产厂家要求的环境下才能达到。达不到规定的环境要求,其寿命的长短就有很大的差异。另外,环境温度的提高,会导致电池内部化学活性增强,从而产生大量的热能,又会反过来促使周围环境温度升高,这种恶性循环,会加速缩短电池的寿命。
(2)定期充电放电。UPS电源系统中的浮充电压和放电电压,在出厂时均已调试到额定值,而放电电流的大小是随着负载的增大而增加的,使用中应合理调节负载,比如控制计算机等电子设备的使用台数。一般情况下,负载不宜超过UPS额定负载的60%。在这个范围内,蓄电池就不会出现过度放电。
UPS因长期与市电相连,在供电质量高、很少发生停电的使用环境中,蓄电池会长期处于浮充电状态,时间长了就会造成电池化学能与电能相互转化的活性降低,加速老化而缩短使用寿命。因此,一般每隔2~3个月应完全放电一次,放电时间可根据蓄电池的容量和负载大小确定。一次全负荷放电完毕后,按规定再充电8小时以上。
(3)利用通讯功能。目前,绝大多数大、中型UPS都具备与微机通讯和程序控制等可操作功能。在微机上安装相应的软件,通过串/并口连接UPS,运行该程序,就可以利用微机与UPS进行通讯。一般具有信息查询、参数设置、定时设定、自动关机和报警等功能。通过信息查询,可以获取市电输入电压、UPS输出电压、负载利用率、电池容量利用率、机内温度和市电频率等信息;通过参数设置,可以设定UPS基本特性、电池可维持时间和电池耗尽告警等。通过这些智能化的操作,大大方便了UPS及其蓄电池的使用管理。
(4)及时更换损坏的电池。目前大中型UPS配备的蓄电池数量,从3只到80只不等,甚至更多。这些单个的电池通过电路连接构成电池组,以满足UPS直流供电的需要。在UPS连续不断的运行使用中,因性能和质量上的差别,个别电池性能下降、储电容量达不到要求而损坏是难免的。当电池组中某个或某些电池出现故障时,维护人员应当对每只电池进行检查测试,更换损坏的电池。更换新的电池时,应该力求购买同一厂家同一型号的电池,禁止密封电池和非密封电池、不同规格的电池混合使用。■
UPS系统的可靠性 由于UPS并非一个单独的应用系统,而是要搭配有其他一些环境因素在里面,所以这些外部因素也是必须考虑进来的。前面提到过,UPS电池的备电时间是有限的,如果断电时间比较长,导致电池电放完,那么负载就仍然会断电。因此UPS可用性会受到市电发生长时间断电概率的影响。 为了解决这一瓶颈,可以在UPS系统中加入一个特性和电池互补的备用电源:在市电断电时的不需要很快反应,但是在长时间停电条件下能够持续提供电力,燃油发电机组就是最为合适的一个选择。因此在UPS系统配置上可以加入一个自动切换装置,在市电停电后切换到发电机组。这样一来能够极大的提升长时间断电条件下UPS系统的可用性。如此则UPS系统的可用性路径就成为 dzsc/19/3034/19303442.gif 虽然在可用性路径里面多串联了一个市电与发电机切换用的ATS,增加了单调路径发生故障的概率,但是相对长时间断电带来的可用性问题来说还是值得的。 在UPS应用的另外一个分支是目前正在兴起的直流UPS系统。直流系统的思路是出于提高效率的目的,减少电源系统中间的转换环节,电力分配部分由原来的交流转换成直流。一个理想的直流UPS系统服务器应用从市电到12V终端的应用...
UPS电源是工业领域用来对负载进行断电保护的关键设备。对于断电保护,针对不同的负载应用,又有两种类型。一种是普通的电脑类设备,当断电发生时,UPS电源需要为负载提供几分钟到十几分钟的后备供电时间。在这段后备时间之内,负载设备会进行数据存储等动作以防数据丢失,之后负载就会关机。在UPS达到后备时间之后负载仍然会断电,但这不会导致经济损失。另外一种是在数据中心,以及工业应用之类的场合,对UPS的要求就是真正的不断电,UPS系统必须提供整年每天24小时的连续供电。本文对可靠性与可用性的讨论就是针对这种情况。 电源系统的可靠性通常可以使用MTBF(平均故障间隔时间,或者平均无故障工作时间,以小时表示)来表示,此外还有一个更加容易理解的指标AFR(年失效率)。AFR和MTBF成反比关系,也就是AFR=8760/MTBF。因此MTBF越长,则年失效率越低。 对于可维修的系统来说,还有一个可用性的指标,其定义是A = MTBF / (MTBF + MTTR)其中A是一个百分比指标,MTTR值得是平均故障修复时间。如果系统出现故障时可以非常快速的恢复,那么系统的可用性指标就比较高。对于电网这类对象来说,使用可用性指标可以更加直观的衡量其可靠程度。而对于在关键场合经...