直插磁珠 规格:3.5*6*0.8mm(直径*长*引脚直径) 磁珠的作用 :
|
磁芯电感的功率耗损 在交换周期中,因磁芯功率电感磁性能量变化所造成的能源耗损,为导通时间以磁能方式存入磁芯、以及在关闭时由磁芯所提取磁能量间的差异。因此,存入磁芯的总能量为图二中B-H回路阴影区域乘上磁芯的体积大小。当功率电感电流下降时,磁场强度降低,磁通密度会循着图二中的不同路径(依据箭头的方向)变化,其中大部分的能量会进入负载,储存能量与发出能量间的差,就是能量的耗损。磁芯的能量耗损为B-H回路所画出的区域乘上磁芯的体积,这个能量乘以切换频率就是功率耗损。迟滞耗损依函数而定,对大部分的铁氧体材料来说,n大约位在2.5到3的范围,但这只有在磁芯没有成为饱和状态、同时交换频率落在规定运作范围内才有效。图二中的阴影区域显示,B-H回路的象限为磁通密度的运作区域,因为大部分的升压式与降压式转换器都以正电感电流运作。 磁芯功率电感的第二个耗损来源为涡流电流。涡流电流是磁芯物质因磁通量变化所造成的电流,依据愣次定律(Lenz’s Law),磁通量的变化会带来一个产生与初始磁通量变化方向相反的反向电流;这个称为涡流的电流,会流进传导磁芯材料,并造成功率耗损。这也可以由法拉第定律看出。由涡流电流所造成的磁芯...
功率电感功率耗损的估算 若以(图五)显示简单电路来描述电感器的耗损,其中RC代表磁芯耗损,RAC与RDC分别代表交流与直流绕线耗损,RC可以透过磁芯耗损的估算取得,RAC与RDC则分别为:因表面效应与近接效应所引起的直流绕线电阻与交流电阻。 (图五) 功率电感的等效耗损模型示意图 内文:若以交换式电源控制器来架构此耗损模型范例,设定输入电压(VIN)为12V,输出电压(VOUT)为5V、且输出电流(IOUT)为2A的降压式转换器形式运作,并采4.7mH的电感,会带来621mA的电感电流涟波,相关磁芯耗损与磁通密度和频率的关系可参考(图四),其中峰对峰磁通密度才是重要关键,它会依循大型迟滞回路中的小型迟滞回路路径变化,请参考图二中的内回路,峰对峰磁通密度则可以透过使用电感器资料规格书中所提供的方程式取得。另一方面,也可以使用电感器电压第二乘积除以绕线数以及绕线内磁芯的面积来取得。 在613高斯(Gauss)下的磁芯耗损大约为470mW,图五中的RC为电感器中造成磁芯功率耗损的等效并联电阻,这个电阻可以由电感器两端的RMS电压、以及磁芯功率耗损计算中取得。(作者任职于Maxim Integrated Products;本文原载于零组件杂志) ...