价 格: | 面议 | |
型号/规格: | MS0603 | |
品牌/商标: | 迈翔(motto) | |
环保类别: | 无铅环保型 | |
主要用途: | | |
额定电流: | A | |
额定电压: | V | |
外形尺寸: | mm |
功率电感定义磁芯电感的功率耗损
在交换周期中,因磁芯功率电感磁性能量变化所造成的能源耗损,为导通时间以磁能方式存入磁芯、以及在关闭时由磁芯所提取磁能量间的差异。因此,存入磁芯的总能量为图二中B-H回路阴影区域乘上磁芯的体积大小。当功率电感电流下降时,磁场强度降低,磁通密度会循着图二中的不同路径(依据箭头的方向)变化,其中大部分的能量会进入负载,储存能量与发出能量间的差,就是能量的耗损。磁芯的能量耗损为B-H回路所画出的区域乘上磁芯的体积,这个能量乘以切换频率就是功率耗损。迟滞耗损依函数而定,对大部分的铁氧体材料来说,n大约位在2.5到3的范围,但这只有在磁芯没有成为饱和状态、同时交换频率落在规定运作范围内才有效。图二中的阴影区域显示,B-H回路的象限为磁通密度的运作区域,因为大部分的升压式与降压式转换器都以正电感电流运作。
磁芯功率电感的第二个耗损来源为涡流电流。涡流电流是磁芯物质因磁通量变化所造成的电流,依据愣次定律(Lenz’s Law),磁通量的变化会带来一个产生与初始磁通量变化方向相反的反向电流;这个称为涡流的电流,会流进传导磁芯材料,并造成功率耗损。这也可以由法拉第定律看出。由涡流电流所造成的磁芯功率耗损,正比于磁芯磁通量变化率的平方。由于磁通量变化率直接正比于所加上的电压,因此涡流电流的功率耗损会随着所加上电感电压的平方增加,并直接与它的波宽相关。相对于迟滞区间耗损,磁芯涡流电流通常会因磁芯材料的高电阻而低上许多,通常磁芯耗损的资料,会同时计入迟滞区间以及磁芯涡流电流的耗损。
dzsc/18/7014/18701463.gif
功率电感定义 功率电感是导线内通过交流电流时在导线的内部及其周围产生交变磁通功率电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化,当在线圈中通过交流电流时其周围将呈现出随时间而变化的磁力线。 功率电感发展趋势 1、精细功率电感器 在便携式电子产品的电源供应器设计当中,面临的挑战是,既要提高电源供应器的工作效率还要减小它的尺寸,也就是说要设计在电力供应设计中使用最小的电感器。解决此难题的办法之一是,提高DC/DC转换器的开关频率,这是影响低电感和小尺寸元件的关键。由负荷波动引起的瞬态响应较低的电感值是抵消了更好的。在这种情况下,伴随着负载波动所引起的更快的瞬态响应,低电感值因高频率而偏移。 但是,有得必有失,提高开关频率的同时也增加了开关损耗,这同样会导致工作效率的降低。由于其他重要电路设计之间相互作用会影响器件性能这一特点,所以仅仅靠增加开关频率并非易事。 近期,开关频率一直保持在500kHz左右而电感在4.7~10μH,这些因素包括提供更好的电路设计,改进材料,完善制造技术,都能让开关频率保持在1MHz以下。 然而,内部电路的进一步细化使得开关频率已经高达3MHz,但...
功率电感定义 功率电感是导线内通过交流电流时在导线的内部及其周围产生交变磁通功率电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化,当在线圈中通过交流电流时其周围将呈现出随时间而变化的磁力线。 电感器的种类 按照外形,电感器可分为空心电感器(空心线圈)与实心电感器(实心线圈)。按照工作性质,电感器可分为高频电感器(各种天线线圈、振荡线圈)和低频电感器(各种扼流圈、滤波线圈等)。按照封装形式,电感器可分为普通电感器、色环电感器、环氧树脂电感器、贴片电感器等。按照电感量,电感器可分为固定电感器和可调电感器。 dzsc/18/7014/18701465.gif